
National Conference on Computer Security, Image Processing, Graphics, Mobility and Analytics (NCCSIGMA)
International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue (NCCSIGMA-16)
https://dx.doi.org/10.22161/ijaers/si.18 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 85

Multiple Approach to Detect Duplicates in CD-
Dataset

Bondugulapati Keerthana1, Dr. K. Ramakrishna2

1Department of CSE, CMR College of Engineering & Technology, Hyderabad, Telangana, India.
Email: keerthanab1992@gmail.com

2Department of CSE, CMR College of Engineering & Technology, Hyderabad, Telangana, India.
Email: krkrishna.cse@gmail.com

Abstract−In Data mining, we are getting data from the
cloud databases and the number of large size datasets will
be increased in the cloud. Hence, the user must clean the
dataset before using it. During the process of data cleaning,
duplicate detection is one phase. Now-a-days, the user
wants to process the larger datasets in less time which is
not possible in the existing system. There are a number of
methods to detect duplicates in the datasets traditionally,
but those are not time efficient and users cannot get
accurate data results. In the existing system, we have used
two methods, namely, 1) Progressive Sorted Neighborhood
Method (PSNM), 2) Progressive Blocking (PB) Method.
These two methods provide good quality in duplicate
detection, but those methods are not time efficient. To
overcome this disadvantage, in this paper we propose a
time efficient Parallel Processing Method. This method is
extended by the traditional Progressive Sorted
Neighborhood Method only. This parallel processing
method, detects the duplicate data faster than the existing
methods. In our experiments, we can observe the processing
time of the parallel method and normal me
Keywords—Data Mining, Dataset, Duplicate Detection,
Parallel Processing, Sorting Key.

I. INTRODUCTION
Databases play a major role in the latest IT based financial
system. Many industries depend upon the accuracy of
databases to carry out different operations. For this reason,
the standard of information saved within the databases, can
have huge amount price implications to a procedure which
depends on expertise to operate and conduct trade. Data
processing must be done whenever the duplicates need to be
found from the dataset. Within the field of engineering,
information mining takes its concepts from information
Discovery(KDD). In the majority of the domains,
duplication is changing into a significant threat. As a result

of this duplication, the information received is more and
therefore memory limitation becomes demanding.
Therefore, the admin finds it troublesome to manage the
information sets. The people keep their portfolio
dynamically despite retailers provides several product
catalogs. In an error-free process with perfectly easy
information, the development of a comprehensive view of
the data contains linking --in relational terms, joining-- 2 or
more tables on their key fields. Unluckily, data usually
deficit a specified, international identifier that will allow
such an operation. Moreover, the data are neither carefully
managed for quality nor defined in a uniform means across
distinct data sources. Therefore, knowledge quality is a rule
understood by a way of many causes, together with
knowledge entry error (e.g., studet in the place of student),
missing integrity constraints (e.g., allowing entries
comparable to Employee-Age=567), and a pair of
conventions for recording expertise to make things worse in
independently managed databases, but the structure,
semantics as well as underlying expectations about the
information may just differ as good. Revolutionary
duplicate detection recognizes most replica pairs early in
the detection approach. Instead of reducing the overall time
needed to terminate the complete process, revolutionary
procedures may attempt to lessen the normal time after
which a duplicate is determined. Duplicate detection is the
method of settling on more than a few representations
which are equal to real-world purpose in a knowledge
source. The quality of replica detection, i.e., its
effectiveness, scalability cannot be unobserved as that of the
gigantic measurement of the database. The duplicate
identification drawback has two features: First, more than
one representation is no longer equal, but combine
differences, equivalent to misspellings, converted locations,
or lost values. This makes it difficult to realize these
duplicates. Second, duplication detection is a very costly

National Conference on Computer Security, Image Processing, Graphics, Mobility and Analytics (NCCSIGMA)
International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue (NCCSIGMA-16)
https://dx.doi.org/10.22161/ijaers/si.18 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 86

operation, because it requires the comparison of each
feasible pair of duplicates using the traditional complex
similarity calculate. Progressive methods make this
exchange-off extra invaluable, as they deliver the whole
outcome in shorter quantities of time. The Revolutionary
Sorted Nearby procedure takes smooth dataset and find
some replica files and Progressive Blocking take dirty
datasets and realize significant duplicate files in the
databases. And finally, in this paper we propose Parallel
Processing method and our work extends by these sorting
methods.

II. RELATED WORK
Dong et al. performed reproduction detection within the
PIM area by a way of using relationships to propagate
similarities from one duplicate classification to yet another.
The important focus of their process is to develop
effectiveness with the aid of using relationships. In contrast,
we are aware of increasing effectively via using
relationships. Before describing our method in detail we
provide some definitions and show an illustration of our
technique. Mostly, in the real world, entities have two or
more extra depictions in databases. Duplicate records do not
share a fashioned key and/or they incorporate blunders that
make a duplicate matching a complex challenge. Error is
offered as the result of transcription error, incomplete
expertise, lack of usual formats, or any blend of those
reasons. In this paper, we provide a thorough evaluation of
the literature on duplicate report detection. We cover
similarity metrics which can be used most of the time to
notice similar area entries, and we proposed an extensive set
of duplicate detection algorithms that can notice
reproduction records in a database approximately. We also
cover a couple of tactics for improving the organization and
scalability of inexact duplicate detection algorithms. We
conclude with the protection of existing tools and with a
quick dialogue of the significant open problems in the
discipline(S. Ramya and Palaninehru, 2015). The problem
that we learnt has been identified for more than five years
because of the file linkage or the file matching problem in
the records community. The purpose of document matching
is to identify the records in the equal or unique databases
that confer with the same real-world entity, even if the files
are identical.
The Pay-as-you-go method explores how we can maximize
the development of ER with a restricted amount of effort
making use of “hints”, (S. E. Whang, D. Marmaros, and H.
Garcia-Molina,2012) which presents expertise on
documents which are prone to point out to the same object.

A hint can be represented in one of a kind of designs (e.g., a
clustering of records based on their possibility of matching),
and ER can use this information as a guiding principle for
which files to be evaluated first. The Pay-as-you-go
technique to entity resolution, is the place where we acquire
fractional results regularly” as a way to get the minimum
outcome faster. An ER approach is very luxurious due to
very large data sets and compute-intensive report
comparisons.
2.1. Adaptive Approaches
Earlier work on replica detection focus on decreasing the
overall runtime. Thereby, one of the important proposed
algorithms is already in a position of assessing the high-
quality of assessment candidates. The algorithms use this
information to prefer the assessment candidates cautiously.
For the equal rationale, other systems utilize adaptive
windowing methods, which dynamically modify the
window measurement relying on the quantity of not too
long ago located duplicates. These adaptive abilities
dynamically secure the efficiency of reproduction detection,
but run for unique durations of time and may not maximize
the affectivity for any given time slot.
2.1.1. The Drawbacks of Traditional Methods

1) These adaptive approaches dynamically give a
boost to the organization of duplicate detection, but unlike
our revolutionary procedures, they have to run for unique
durations of time and can't limit the affectivity for any given
time slot.

2) Wants to method giant dataset in less time
3) Quality of dataset is very complex

III. FRAMEWORK
The main aim of this paper is to detect the duplicate data in
the different types of large and small datasets parallelly. In
this paper, we are detecting duplicates on CD dataset. To
detect duplicate data in the dataset, we follow three main
steps,

• Pair selection

• Pair wise comparison
• Clustering

National Conference on Computer Security, Image Processing, Graphics, Mobility and Analytics (NCCSIGMA)
International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue (NCCSIGMA-16)
https://dx.doi.org/10.22161/ijaers/si.18 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 87

3.1. System Architecture

Fig.1: System Architecture

In the above architecture, we take some datasets and in the
first step, we are partitioning our complete dataset.
Partitioning is nothing but if we give a partition size=30
then it means that, we are keeping 30 records in every
partition. After partitioning the dataset, we can perform the
sorting algorithm on the dataset. In that sorting, it will
compare the duplicates as a pair-wise comparison. After
comparison, it will display the duplicate pairs to us.
3.2. Dataset Overview
In this paper, we are detecting the duplicates on CD dataset.
It contains 9763 records and these records are related to the
music and audio CDs. This dataset contains some of the
attributes such as ID, artist, category, genre, cdextra, and
year. From these attributes we can get some attributes as
sorting keys by using the attribute concurrency method. For
example, if we select “artist” as a sorting key then, the
processing is done based on the artist related data only and
after completion of processing it display the duplicate text
of the artist attribute from dataset.
3.2.1. Sorting Key
1) Need of Sorting Key
Importance of this sorting key is that generally large dataset
contains lakhs and thousands of records. Every time reading
the complete dataset and detect all the duplicates in the
dataset is not possible. Sometimes the user needs to detect
the duplicate data and detect the duplicate count only on
particular data. In this type of situations, we need a sorting
key. Without sorting key it is difficult to sort the data from
dataset.
To sort the dataset, we are using magpie sorting. In this
sorting we are selecting one sorting key. To select the best
key for sorting we are using the attribute concurrency
method.
2) Sorting Key Selection
The best key for locating the duplicate is very hard to
identify. Selecting good keys can increase the

progressiveness. Here all the records are taken and checked
as a parallel process so as to reduce the average execution
time. The records are kept in multiple resources while
splitting. The intermediate duplication results are intimated
immediately when found in any resources and come back to
most of the applications. Therefore the time consumption is
decreased. Resource consumption is same as that of the
existing system but the information is kept in multiple
resource memories.
3.3. Algorithms
3.3.1. Progressive Sorted Neighborhood Method(PSNM)
1: procedure PSNM(D, K, W, I, N)
2: pSize ← calcPartitionSize(D)
3: pNum ← [N / (pSize – W + 1)]
4: array order size N as Integer
5: array recs size pSize as Record
6: order ← sortProgessive(D, K, I, pSize, pNum)
7: for currentI ← 2 to [W / I] do
8: for currentP ← 1 to pNum do
9: recs ← loadPartition(D, currentP)
10: for dist ∈ range (currentI, I, W) do
11: for i ← 0 to |recs| – dist do
12: pair ← <recs[i], recs[i + dist]>
13: if compare(pair) then
14: emit(pair)
15: lookAhead(pair)

3.3.2. Progressive Blocking (PB) Algorithm
1: procedure PB(D, K, R, S, N)
2: pSize ← calcPartitionSize(D)
3: bPerP ← [pSize / S]
4: bNum ← [N / S]
5: pNum ← [bNum / bPerP]
6: array order size N as Integer
7: array blocks size bPerP as <Integer, Record[]>
8: priority queue bPairs as <Integer, Integer, Integer>
9: bPairs ← {<1,1,_>,… ,<bNum, bNum, _>}
10: order ← sortProgressive(D, K, S, bPerP, bPairs)
11: for i ← 0 to pNum – 1 do
12: pBPs ← get(bPairs, i.bPerP, (i+1).bPairs)
13: blocks ← loadBlocks(pBPs, S, order)
14: compare(blocks, pBPs, order)
15: while bPairs is not empty do
16: pBPs ← {}
17: bestBPs ← takeBest([bPerP / 4], bPairs, R)
18: for bestBP ∈ bestBPs do
19: if bestBP[1] – bestBP[0] < R then
20: pBPs ← pBPs ∪ extend(bestBP)
21: blocks ← loadBlocks(pBPs, S, order)

National Conference on Computer Security, Image Processing, Graphics, Mobility and Analytics (NCCSIGMA)
International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue (NCCSIGMA-16)
https://dx.doi.org/10.22161/ijaers/si.18 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 88

22: compare(blocks, pBPs, order)
23: bPairs ← bPairs ∪ pBPs
24: procedure compare(blocks, pBPs, order)
25: for pBP ∈ pBPs do
26: <dPairs, cNum> ← comp(pBP, blocks, order)
27: emit(dPairs)
28: pBP[2] ← |dPairs| / cNum

3.4. Parallel Processing Method
Parallel processing means we execute the number of
processes at a time that means parallelly. This is caused by
using some of the concurrency methods. In this method
first we are partition the dataset completely. These
concurrency methods are used to execute all the partitions
of the dataset at a time so as to reduce the execution time of
the process. This proposed method selects the sorting key
from the dataset by using the attribute concurrency method.
It also takes the window/block size to partition the complete
dataset. Basically, our proposed system is extended by the
traditional Progressive Sorted Neighborhood Method
(PSNM) and Progressive Block (PB). For that reason we
have to give the window size as partition size. Based on
these sorting key and window size, the parallel processing
method executes all the partitions of the dataset and it also
displays the parallel processing time of the proposed
method.

IV. EXPERIMENTAL RESULTS
In our experiments, we are going to detect duplicates on the
CD-Dataset by using the Parallel Processing method. The
first step in our experiment is to upload the CD-dataset into
the system. After uploading the dataset, we must select the
sorting key and the window/block size. This window/block
size is used to partition the complete dataset and it is
calculated by using this formula:

By using this formula, the size of each partition will be
displayed and also it's duplicate size can be viewed in the
system. And finally, the processing time of the algorithms is
also displayed.
Here, we perform the traditional PSNM algorithm as well as
traditional PB algorithm to verify the processing time of our
proposed Parallel Processing method.

Fig. 2: Processing time of parallel processing method

The above screen shows the processing time of the Parallel
Processing method.
The below screen shows the comparison chart for the
normal processing time and parallel processing time:

Fig. 3: Comparison chart for normal and parallel

processing time
From our experiments, we observe that our proposed
Parallel Processing method is a time efficient method to
detect duplicates.

V. CONCLUSION
Finally, we conclude that in this paper we proposed a time
efficient and improved Parallel Processing method. The
proposed method is inspired by the traditional PSNM and
PB algorithms. In our proposed method we get the duplicate
detection time, duplicate count and duplicate text. In this
experiment we used CD-Dataset and from this dataset we
detect the duplicate count and duplicate text within
milliseconds of time. Eventually, we proved that our
proposed method is time efficient than the traditional
algorithms.

REFERENCES
[1] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios,

“Duplicate record detection: A survey,” IEEE Trans.
Knowl. Data Eng., vol. 19,no. 1, pp. 1–16, Jan. 2007.

0

2000

4000

6000

1 2 3 4 5

P
ro

ce
ss

in
g

 t
im

e
 i

n
 m

il
li

se
co

n
d

s(
m

s)

Comparison of processing time of parallel and

normal methods

Normal

Parallel

Partitions of Complete Dataset=Dataset Size /
(Window/block size)

National Conference on Computer Security, Image Processing, Graphics, Mobility and Analytics (NCCSIGMA)
International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue (NCCSIGMA-16)
https://dx.doi.org/10.22161/ijaers/si.18 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 89

[2] S. E. Whang, D. Marmaros, and H. Garcia-Molina,
“Pay-as-you-go entity resolution,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 5, pp. 1111–1124, May
2012.

[3] M. Wallace and S. Kollias, “Computationally efficient
incremental transitive closure of sparse fuzzy binary
relations,” in Proc. IEEE Int. Conf. Fuzzy Syst., 2004,
pp. 1561–1565.

[4] P. Christen, “A survey of indexing techniques for
scalable record linkage and deduplication,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 9, pp. 1537–
1555, Sep. 2012.

[5] B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz,
“The Plista dataset,” in Proc. Int. Workshop Challenge
News Recommender Syst., 2013, pp. 16–23.

[6] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J.
Miller, “Framework for evaluating clustering
algorithms in duplicate detection,” Proc. Very Large
Databases Endowment, vol. 2, pp. 1282– 1293, 2009.

[7] S. Ramya and PalaninehruA, “Study of Progressive
Techniques for Efficient Duplicate Detection”, 2015.

[8] R. Ramesh Kannan, D. R. Abarna, G. Aswini, P.
Hemavathy, “Effective Progressive Algorithm for
Duplicate Detection on Large Dataset”, 2016.

[9] B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz,

“The Plista dataset”, in Proc. Int. Workshop Challenge
News Recommender Syst., 2013, pp. 16–23.

[10] L. Kolb, A. Thor, and E. Rahm, “Parallel sorted
neighborhood blocking with MapReduce,” in Proc.
Conf. Datenbanksysteme in Buro, Technik und
Wissenschaft, 2011.

